Impact of Russia-Ukraine war on European gas markets: can Europe cope without Russian gas?

3rd March 2022
Agenda

I. How important is Russian gas in Europe?

II. Where are we now with Russian gas and what happened to gas prices?

III. What could happen in markets in the next 2-3 years? We examine three scenarios:
 1. Nord Stream 2 delayed to 2025
 2. Disruption to Russian gas via Ukraine combined with Nord Stream 2 delayed to 2025
 3. Halt in all Russian gas to Europe

IV. Could Europe cope without any Russian gas this coming winter?

V. What are the policy implications for governments from this crisis?
Russia meets around 30-40% of gas demand in Europe and is the largest single supplier

- Europe’s gas demand is met through three primary sources, of which Russia is the largest single supplier. The share of Russian gas has been consistently above 35% on an annual basis.
- European gas imports from Russia increased steadily year-on-year between 2015 and 2019, before dropping 7% in 2020 due to weak gas demand and prices due to the pandemic.
- As a share of European imports, Russian pipeline supply slightly reduced in 2021 to 36%.
- Russia also accounted for 15% of LNG imports to Europe in 2021.

Sources: Aurora Energy Research, BP Statistical Review of World Energy 2021

1) Includes Baltic states. 2) LNG import composition in 2021 by exporting country: US 25%, Qatar 23%, Russia 15%, Nigeria 13%, Algeria 12%, Norway 4%, Other 8%.
How important is Russian gas in Europe?

Russian gas flows into Europe declined in 2020, but have been increasing in the last week of February

Average monthly Russian gas deliveries to Europe\(^1\) since February 2015 mcm/d

Daily Russian gas deliveries to Europe\(^1\) mcm/d

1\(^{st}\) Shown capacities (dashed lines) are cumulative, starting from Nord Stream 1, Yamal-Europe, TurkStream and Ukraine. Other marginal routes, including about 15.7mcm/a of additional capacity at the Belarus-Poland border were excluded. This is excluding Turkey and the Baltics vs capacity.

Source: Aurora Energy Research
I. How important is Russian gas in Europe?

II. Where are we now with Russian gas and what happened to gas prices?

III. What could happen in markets in the next 2-3 years? We examine three scenarios:
 1. Nord Stream 2 delayed to 2025
 2. Disruption to Russian gas via Ukraine combined with Nord Stream 2 delayed to 2025
 3. Halt in all Russian gas to Europe

IV. Could Europe cope without any Russian gas this coming winter?

V. What are the policy implications for governments from this crisis?
Developments in European gas markets since Russia’s military invasion

Where are we now with Russian gas and what happened to gas prices?

February

- **Feb 22nd**
 Germany halts certification of NS2, and US imposes additional sanctions on NS2 entities after Russia recognises two breakaway regions in eastern Ukraine

- **Feb 24th**
 European gas prices reach EUR 136/MWh, up 61% from Feb 23rd close

- **Feb 25th**
 As buyer demand for LTC increases due to high spot prices, UA transit gas is nominating at the long-term bookings of 109 mcm/d, increasing the total Russian gas flows to Europe

- **Feb 26th – Feb 28th**
 BP announces the sale of its 20% stake in Rosneft. Shell and ExxonMobil announce divestment from Russian assets, including Sakhalin LNG and NS2. Equinor to drop all Russian positions

- **Feb 28th**
 UK refuses entry to UK ports for Russian flagged and owned vessels. Similar measures are currently considered by the EU

- **Feb 28th**
 German Ministry of Economic Affairs and Climate Action announces new law that requires storage fill levels of 80% by 1st of October and 90% by 1st of December each year

March

- **Mar 1st**
 Gazprom-owned Nord Stream 2 AG lays off the majority of the 140 staff in its Swiss office

- **Mar 1st**
 Centrica announces it will exit gas supply agreements with Gazprom and other Russian counterparts

Timeline is not exhaustive. 1) TTF front-month contract

Source: Aurora Energy Research
Where are we now with Russian gas and what happened to gas prices?

Gas and power prices reacted to news of the Nord Stream 2 suspension, war in Ukraine, and Western sanctions

Cumulative daily change in Dutch TTF forward prices\(^1\)\(^2\)
EUR/MWh

- Gas prices set new record high, adding to gains in the previous week
- Prices fall again on 25\(^{th}\) Feb as the US makes statement on avoiding sanctioning Russia’s energy sector
- Gas prices jump sharply day-on-day as Russian military advances into Ukraine on 24\(^{th}\) Feb

Cumulative daily change in German baseload power futures\(^2\)
EUR/MWh

- Prices jump as the war continues and sanctions on Russian sectors intensify; some private energy firms take actions to cut their exposure to the Russian energy sector
- Power prices move in sync with gas prices, reflecting jumps in price and high volatility

Sources: ICE, EEX

1) ICE TTF futures 2) EEX German baseload power futures 2) Summer prices for delivery in April-September, winter prices for delivery in October-March
I. How important is Russian gas in Europe?

II. Where are we now with Russian gas and what happened to gas prices?

III. What could happen in markets in the next 2-3 years? We examine three scenarios:

 1. Nord Stream 2 delayed to 2025
 2. Disruption to Russian gas via Ukraine combined with Nord Stream 2 delayed to 2025
 3. Halt in all Russian gas to Europe

IV. Could Europe cope without any Russian gas this coming winter?

V. What are the policy implications for governments from this crisis?
We examine the impact on markets of three Russian gas scenarios

Historical flows 2019-21, total capacity under three scenarios

1) As published on 4 May 2021 on EOS

Historical flows 2019-21, total capacity under three scenarios

Optimistic: There is a de-escalation of conflict between Russia and Ukraine and only a two-year delay to Nord Stream 2. This scenario is most similar to a return to the situation before the Russian military incursion into Ukraine. This is the most optimistic of the three scenarios.

No Ukraine transit: Russian gas to Europe is constrained significantly until 2025 because of a complete halt to Ukrainian transit flows. NS2 is also suspended until 2025, but other routes remain available.

Drastic: No Russian gas flows to Europe along any route.

Source: Aurora Energy Research
Russian gas deliveries would not fit into Nord Stream 1, TurkStream and Yamal alone.

Historical gas flows are higher than capacity without Ukraine:
- Aurora estimates that European countries have 137 bcm/a in total of pipeline supply contracts with Russia for 2022.
- In Scenario 1, a delay to Nord Stream 2 will still result in enough capacity to meet 2021’s Russian gas flows and contracted supply.
 - This would still keep gas flows lower than in 2016–19.
 - Gazprom could still send 5.5 bcm/a more through Ukraine, in addition to its 40 bcm/a long-term booking, but auctions for this capacity are suspended.
- In Scenario 2, losing the Ukraine route means capacity would be below the estimated contract level by nearly 20 bcm in 2022.
- Nord Stream 1 is already used at available capacity.

1) Excluding Turkey and the Baltic States.
2) Capacity at Polish-Belarussian border used.
3) Downstream regulatory restrictions would keep combined NS1 and NS2 flows below capacity. 4) Ukraine max capacity based on transit capacity provided by Ukrainian network operator TSOUA, which is partially mothballed.

Source: Aurora Energy Research
A complete loss in Ukrainian transit boosts LNG and North African imports, until NS2 starts in 2025

European gas balance (bcm)

- LNG receipts and North Africa piped imports pick up until 2024
- Compared to Scenario 1, no Ukraine transit means total Russian gas is down ~20% between 2022 and 2024
- The introduction of NS2 increases Russian flows by 40% year-on-year in 2025. LNG and North Africa imports lose share in the balance

Total Russian gas is down ~20% compared to the first scenario

- LNG sendout increases yearly before reaching up to 128bcm in 2024
- Piped imports from North Africa are at 80% of pipeline capacity between 2022-24 before slowing down with the introduction of NS2
- Russian, Norwegian and Caspian flows are at relatively stable levels between 2022 and 2024 without much upside available
- Compared to scenario 1, there is a ~2bcm drop in gas demand in 2023, driven by fuel-switching economics
- A drop in Russian gas means less is exported from the west to Ukraine, risking a supply shortage. This is despite there being enough west-to-east pipeline capacity to fill its supply gap.

Source: Aurora Energy Research
I. How important is Russian gas in Europe?

II. Where are we now with Russian gas and what happened to gas prices?

III. What could happen in markets in the next 2-3 years? We examine three scenarios:
 1. Nord Stream 2 delayed to 2025
 2. Disruption to Russian gas via Ukraine combined with Nord Stream 2 delayed to 2025
 3. Halt in all Russian gas to Europe

IV. Could Europe cope without any Russian gas this coming winter?

V. What are the policy implications for governments from this crisis?
Coping next winter without Russian gas requires storage refill at cost of >60bn EUR, likely requires regulatory intervention

European supply measures required in event of no Russian gas supply in the period October 2022 – March 2023 bcm

- European wholesale gas customers would need to compete on the LNG spot market to secure significant additional volumes, at a substantial cost
- Norway, the UK and elsewhere have limited scope to increase production
- The Dutch Groningen field is planned to be primarily shut in winter 2022-23, but if kept online, it could add some supply
- The gap left after these options is 33 bcm (12%) of projected supply for winter 2022-23 but could be reduced further depending on the level of storage going into winter
- Ensuring sufficient storage levels before next winter likely requires regulatory intervention given high risk for storage operators
- Gas infrastructure, especially for west-to-east flows may become a major constraint

- Includes Romania and Poland
- Assumes withdrawals in winter 2022-23 are in line with the lowest since 2015 (winter 2018-19) 4
- Initial 22bcm fills storage facilities to 60% at start winter 2022-23, additional 33bcm fills storage to 90%, assumes stocks would end winter at 20% storage levels

Source: Aurora Energy Research

<table>
<thead>
<tr>
<th>Baseline / BAU</th>
<th>Loss of Russian supply</th>
<th>Maximise LNG</th>
<th>Norway production</th>
<th>North Africa imports</th>
<th>Reverse ramp down of Groningen</th>
<th>UK + other production</th>
<th>Additional storage withdrawals</th>
<th>Gas supply without Russia</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>109</td>
<td>59</td>
<td>15</td>
<td>50</td>
<td>20</td>
<td>33</td>
<td>33</td>
<td>286 (-11%)</td>
</tr>
</tbody>
</table>
Europe could pursue a range of options to reduce short term gas demand – but most carry significant economic, political or carbon costs

<table>
<thead>
<tr>
<th>Policy option</th>
<th>Short term feasibility</th>
<th>Reduction of EU gas demand</th>
<th>Barriers and limitations</th>
<th>Risks of implementation</th>
<th>Medium term feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay nuclear retirements (~8 GW across Germany, Belgium, UK)</td>
<td>🚬</td>
<td>< 5 bcm</td>
<td>- Plants need to deviate from existing decommissioning schedules</td>
<td>- Difficulty sourcing fuel supplies from non-Russian sources by next winter</td>
<td>🚬</td>
</tr>
<tr>
<td>Keep coal plants online and revert recently retired capacities (~17 GW across Germany, Italy, UK, Iberia, France)</td>
<td>🚬</td>
<td>>7 bcm</td>
<td>- Plants need to deviate from existing decommissioning stages</td>
<td>- Switching from Russian coal grades may not be feasible for all plants</td>
<td>🚬</td>
</tr>
<tr>
<td>- Increased coal demand (~13Mt) must be secured from suppliers</td>
<td>- Setback to decarbonisation efforts (~22MtCO₂e increase in emissions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerate renewables deployment</td>
<td>🚬</td>
<td><1 bcm</td>
<td>- Long term planning and development process, high cost</td>
<td>- Limited short term impact</td>
<td>🚬</td>
</tr>
<tr>
<td>- High RES costs in short term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behaviour change or price-induced demand response¹</td>
<td>🚬</td>
<td>4 bcm</td>
<td>- Consumer and political acceptability – effect on standard of living</td>
<td>- Requires coordinated demand reduction campaign</td>
<td>🚬</td>
</tr>
<tr>
<td>- Social licence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerate renovations and heat pump deployment</td>
<td>🚬</td>
<td>>1 bcm</td>
<td>- Insufficient incentives at present to encourage faster deployment</td>
<td>- The time period until next winter limits the retrofits that can realistically be implemented</td>
<td>🚬</td>
</tr>
<tr>
<td>- Supply chain disruptions/limitations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry consumption reduction and fuel switching</td>
<td>🚬</td>
<td>10-15 bcm</td>
<td>- Limited amount of industrial players can rapidly switch boiler fuels from gas to coal or oil</td>
<td>- Loss of production and resultant economic impacts</td>
<td>🚬</td>
</tr>
<tr>
<td>- Setback to decarbonisation efforts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹) Modelled as a 1°C reduction in space heating, 10% less hot water use

Source: Aurora Energy Research
Demand could be reduced by up to 14%, but requires concerted effort by regulators, industry and consumers

European demand reductions required in event of no Russian gas supply in the period October 2022 – March 2023 bcm

<table>
<thead>
<tr>
<th>Projected demand</th>
<th>Gas to coal switch (merit order)</th>
<th>Delay nuclear retirements</th>
<th>Keep coal units online</th>
<th>Household measures to reduce gas use</th>
<th>Accelerate renovations and heat pump deployment</th>
<th>Industry demand reduction and fuel switching</th>
<th>Potential demand without Russian gas supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>297</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>251</td>
</tr>
<tr>
<td>286</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Power sector measures face considerable technical and commercial uncertainties to implement.
- Households would need to make at least modest behavioural changes to reduce gas demand.
- Industrial consumers face high prices and voluntary or mandatory curtailment.
- Keeping retiring coal plants online would almost double the current levels of Russian coal imports and increase emissions by 22 MtCO₂.
- Halt to Russian gas imports scenario.

Demand could be reduced by up to 14%, but requires concerted effort by regulators, industry and consumers. Based on historical demand since 2011, the following measures are necessary:

- **Power sector** measures face considerable technical and commercial uncertainties.
- **Households** would need to make at least modest behavioural changes to reduce gas demand.
- **Industrial consumers** face high prices and voluntary or mandatory curtailment.
- Keeping retiring coal plants online would almost double the current levels of Russian coal imports and increase emissions by 22 MtCO₂.

Key Points:

- 25 GW of nuclear and coal plant closures across Europe can be delayed to offset ~12 bcm of gas demand but are subject to considerable technical and commercial uncertainties.
- Increasing coal-fired power generation will require an additional ~13 mt coal, almost doubling the current level of Russian imports.
- Residential gas demand could fall either as a result of higher prices or through active campaigns to improve efficiency or change behaviour.
- Industrial demand reductions of ~5-10% are only possible in the short term through fuel switching or curtailment of production.
- A colder or warmer than average winter would materially affect the supply-demand imbalance and thus the reductions needed.
I. How important is Russian gas in Europe?

II. Where are we now with Russian gas and what happened to gas prices?

III. What could happen in markets in the next 2-3 years? We examine three scenarios:
 1. Nord Stream 2 delayed to 2025
 2. Disruption to Russian gas via Ukraine combined with Nord Stream 2 delayed to 2025
 3. Halt in all Russian gas to Europe

IV. Could Europe cope without any Russian gas this coming winter?

V. What are the policy implications for governments from this crisis?
Gas demand savings in power sector and households save money; filling gas storage will be costly

Relative cost to address natural gas supply gap (first estimate)
EUR per MWh of natural gas avoided or stored

<table>
<thead>
<tr>
<th></th>
<th>Households</th>
<th>Industry demand reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replenish storage</td>
<td>~100 - 200</td>
<td>~100 - ~500</td>
</tr>
<tr>
<td>Keep coal units online</td>
<td>~150 - 50</td>
<td></td>
</tr>
<tr>
<td>Delay nuc. exit</td>
<td>~133 - 33</td>
<td></td>
</tr>
<tr>
<td>Gas to coal switch</td>
<td>~80 - 0</td>
<td></td>
</tr>
</tbody>
</table>

What are the policy implications for governments from this crisis?

- Household demand reductions offer the most economical option as reduced gas consumption directly translates to savings.
- Replacing gas by coal and nuclear in power benefits from delta in fuel cost, but would partly require reactivation cost.
- Cost of additional carbon emissions are not taken into account as EU economy is able to reuse these for mitigation measures.
- Storage replenishment is directly linked to gas prices - Cost calculations assume gas price of 100-200 EUR/MWh, higher prices are possible and would exacerbate both savings as well as cost for storage.
- Cost for industry demand reduction assumes production interruption of 1%-3.5% of industry GDP over winter which offsets energy savings by an order of magnitude.

Source: Aurora Energy Research
Governments had already responded to high energy prices with tax reductions, subsidies and price controls; more will be needed

Since 2021, many governments in Europe introduced energy subsidies. Further rises in wholesale prices will put more pressure on public budgets.

- Countries across Europe have enacted measures to reduce the impact of high wholesale energy prices on households and industry.
- Some of these were enacted in 2021, in response to rising gas and power prices.
- Wholesale prices are rising again in 2022. Extending or even increasing these subsidies will become costly to public budgets.
- High wholesale prices also creates risks for solvency of energy suppliers if unhedged. Governments may need to step in to mitigate risk of supplier failure.

Selected government measures to tackle high wholesale and retail energy prices

- In H2-22, loan to suppliers for £200/household rebate on energy bill.
- Limiting power price increases to 4%, about EUR 100/household relief package for low income families.
- Until April-22, electricity taxes are reduced. Expected to be extended if prices remain high. Calls to move away from marginal pricing of electricity to decouple power prices from extremely high gas prices.
- Plans to abolish EEG levy by 1st July 2022, six months earlier than planned.
- Gas prices frozen for some end consumers for the rest of 2022 and 2023.
- Income tax cuts for lower earners to be implemented in 2022. Payment plans to be introduced to support households cope with higher energy bills.
- From Oct-21, energy bill subsidy for households and for businesses.

Source: Aurora Energy Research
Europe can mitigate a disruption or complete halt to Russian gas imports through supply- and demand-side measures, but it would come at a cost

- Russian energy imports are key for European supply, accounting for 30-40% of total gas imports in Europe, and over 75% in some countries in the east and south
- The ongoing invasion of Ukraine has raised the threat of supply disruptions, and driven gas and power prices up sharply
- Europe and the US have responded, introducing severe sanctions. Gas and other energy imports have continued but the risk of disruption presents significant challenges

1. In our optimistic scenario with only a delay to NS2 until 2025, LNG imports reach closer to maximum regasification capacity, but drop again once NS2 is online. Overall, there is enough gas in Europe

2. Should Ukraine gas transit stop from 2022, and NS2 be delayed to 2025, Europe could compensate with a strong rise in LNG and African pipeline imports, but there may be insufficient western supply for Ukraine

3. In the extreme case where Russian gas imports cease, this would leave a 109 bcm gap in projected supply next winter
- An increase in alternative supply could make up for over 70% of this shortfall, including higher LNG and other pipeline imports and an increase to indigenous production
- Storage would play a key role in meeting winter demand, but could require an initial investment of EUR 60-100 billion and likely require Government intervention

- Demand could be reduced by up to 14%, but would require concerted and coordinated efforts by regulators, industry and consumers
- Households could meaningfully reduce gas consumption (and bills) through immediate modest behavioural changes
- Power plant operators face technical and commercial challenges to secure alternative fuel supplies, especially if Russian coal imports also cease
- Industrial demand reductions of ~5-10% are only possible in the short term through fuel switching or curtailment

Source: Aurora Energy Research
Aurora provides data-driven intelligence for the global energy transformation

- Power markets
- Renewables
- Storage
- Electric vehicles
- Hydrogen
- Carbon
- Natural gas

United States

Europe

Australia

6 Offices
Oxford | Berlin | Madrid
Sydney | Austin | SF Bay Area

225+ market experts

550+ subscribing companies

100+ transactions supported in 2021

Regular detailed coverage
Analytics on demand

Source: Aurora Energy Research
Aurora brings a sophisticated approach to the provision of analysis and insight to the energy industry

Research & Publications
- Industry-standard market outlook reports and bankable price forecasts for power, gas, carbon and hydrogen markets
- Strategic insights into major policy questions and new business models
- Read and constantly challenged by 550+ subscribers from all industry sectors

Commissioned Projects
- Bespoke analysis, drawing upon our models and data
- Trusted advice for all major market participants proven in 600+ projects: transaction support, valuations, strategy & policy engagement

Software as a Service
- Out-of-the-box SaaS solutions, combining cutting-edge sophistication with unparalleled ease of use
- Origin provides cloud-based access to Aurora’s market model, pre-populated with our data
- Amun automates asset-specific wind farm valuations for over 30 leading funds, developers and utilities

Models & Data
- Market-leading long-term models for power, gas, hydrogen carbon, oil and coal markets
- Continuous model improvements to reflect policy and market developments
Disclaimer and Copyright

General Disclaimer
This document is provided "as is" for your information only and no representation or warranty, express or implied, is given by Aurora Energy Research Limited and its subsidiaries Aurora Energy Research GmbH and Aurora Energy Research Pty Ltd (together, "Aurora"), their directors, employees agents or affiliates (together, Aurora’s "Associates") as to its accuracy, reliability or completeness. Aurora and its Associates assume no responsibility, and accept no liability for, any loss arising out of your use of this document. This document is not to be relied upon for any purpose or used in substitution for your own independent investigations and sound judgment. The information contained in this document reflects our beliefs, assumptions, intentions and expectations as of the date of this document and is subject to change. Aurora assumes no obligation, and does not intend, to update this information.

Forward-looking statements
This document contains forward-looking statements and information, which reflect Aurora’s current view with respect to future events and financial performance. When used in this document, the words "believes", "expects", "plans", "may", "will", "would", "could", "should", "anticipates", "estimates", "project", "intend" or "outlook" or other variations of these words or other similar expressions are intended to identify forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements as a result of known and unknown risks and uncertainties. Known risks and uncertainties include but are not limited to: risks associated with political events in Europe and elsewhere, contractual risks, creditworthiness of customers, performance of suppliers and management of plant and personnel; risk associated with financial factors such as volatility in exchange rates, increases in interest rates, restrictions on access to capital, and swings in global financial markets; risks associated with domestic and foreign government regulation, including export controls and economic sanctions; and other risks, including litigation. The foregoing list of important factors is not exhaustive.

Copyright
This document and its content (including, but not limited to, the text, images, graphics and illustrations) is the copyright material of Aurora, unless otherwise stated. This document is confidential and it may not be copied, reproduced, distributed or in any way used for commercial purposes without the prior written consent of Aurora.